

Registration Document for Biohazards

P.I Information	Location of Study		
Name:	Building:		
Title:	Room #s:		
Department:	 Shared Facilities: 		
E-Mail:	• Available Containment Equip:		
Phone:	Date:		

Section A: General/Administrative Information

Introduction

Protocol Title:

PI's Anticipated Biosafety Level:

Brief Description of Protocol (please describe experimental protocol including how the biological material will be utilized in the laboratory):

Material Use Checklist (Please check the materials that are used in your lab then complete the specified section for each material)

Recombinant DNA:

Genetic manipulation of microorganisms including inserting or deleting genes, use of viral vectors, development of human gene therapy, experiments involving siRNA, development of synthetic DNA constructs, etc.

Recombinant DNA, gene transfer and/or host vector systems
Use of transgenic animals (including knockouts, knock ins, crossbreeding of two different
transgenic strains)
Use of transgenic plants
Complete Section B for Exempt rDNA Experiments
Complete Section C for Non-Exempt rDNA Experiments

Potentially Infectious Microorganisms/Infectious agents:

Bacteria
Virus
Yeast and other Fungi
Prions and/or Parasitic Agents
Complete Section D for Potentially Infectious Biological Agents
Complete Section D for Host Organisms Listed in Section B and C (Above)

Human/Non-Human Primate Derived Materials, Blood, Body Fluids, Cell Lines:

Human cell lines including established human cell lines
Primary human tissue explants
Non-Human primate cell lines
Primary non-human primate tissue explants
Human non-human primate blood, body fluids
Complete Section E for human and non-human primate cell lines and tissue explants

Other:

Biological Toxins - NOT Select Agents (please complete section F)
CDC/APHIS Select Agents
Human subjects including the use of Embryonic Stem Cells

Risk Assessment:

Please describe the risk assessment process and how the appropriate biosafety precautions were determined for this protocol; you may include database searched, search terms, dates, etc.

Briefly desc	ribe Risk Assessment process and check off any database searches below:
Pu	bMed Search
CE	DC-NIH Guidelines
rD	NA Guidelines
Ste	evens Institute Safety Literature
Otl	her:

Protocol Specific Laboratory Safety:

Please complete Section G for all protocols submitted to the Biosafety Committee for consideration.

Principal Investigator Acknowledgement:

By signing below, the Principal Investigator acknowledges that the laboratory workers (including students, faculty, staff or visitors) under his or her direction have received appropriate training required to manipulate, store, and disinfect the microorganisms, human-derived materials, or recombinant materials proposed for use in the following protocol. Further, laboratory workers have been instructed on emergency procedures involving potentially infectious materials as outlined in Section VI (page 37) of the Stevens Biological Safety Guide.

Principal Investigator:	Date:	

Biosafety Committee Action:

This protocol was reviewed by the Stevens Institutional Biosafety Committee on:

The following IBC action was taken:

Protocol Approved
Protocol Withdrawn
Protocol Tabled Until Next Meeting
Protocol Not Approved

Approved Protocols:

Assigned Biosafety Level:		
Protocol approved by: (sign and date below)	Signature	Date
Stevens Biosafety Officer		
Chair, Stevens Biosafety Committee		
Protocol will remain in effect until		
• BL-1 Protocols are approved for 3 years		
• BL-2 Protocols are approved for 2 years		
Associated IACUC Protocol #:		
Associated IRB Protocol #:		

Section B: <u>Exempt Recombinant DNA Experiments</u> (please check those sections of the NIH Guidelines under which your experiments are exempt)

	Section III-F-1. Those synthetic nucleic acids that: (1) can neither replicate nor generate nucleic acids that can
	replicate in any living cell (e.g., oligonucleotides or other synthetic nucleic acids that do not contain an origin of
	replication or contain elements known to interact with either DNA or RNA polymerase), and (2) are not
	designed to integrate into DNA, and (3) do not produce a toxin that is lethal for vertebrates at an LD50 of less
	than 100 nanograms per kilogram body weight. If a synthetic nucleic acid is deliberately transferred into one or
	more human research participants and meets the criteria of Section III-C, it is not exempt under this Section.
	Section III-F-2. Those that are not in organisms, cells, or viruses and that have not been modified or
	manipulated (e.g., encapsulated into synthetic or natural vehicles) to render them capable of penetrating cellular
	membranes.
	Section III-F-3. Those that consist solely of the exact recombinant or synthetic nucleic acid sequence from a
	single source that exists contemporaneously in nature.
	Section III-F-4. Those that consist entirely of nucleic acids from a prokaryotic host, including its indigenous
	plasmids or viruses when propagated only in that host (or a closely related strain of the same species), or when
	transferred to another
	Section III-F-5. Those that consist entirely of nucleic acids from a eukaryotic host including its chloroplasts,
	mitochondria, or plasmids (but excluding viruses) when propagated only in that host (or a closely related strain
	of the same species).
	Section III-F-6. Those that consist entirely of DNA segments from different species that exchange DNA by
	known physiological processes, though one or more of the segments may be a synthetic equivalent. A list of
	such exchangers will be prepared and periodically revised by the NIH Director with advice of the RAC after
	appropriate notice and opportunity for public comment (see Section IV-C-1-b-(1)-(c), Major Actions). See
	Appendices A-I through A-VI, Exemptions under Section III-F-6Sublists of Natural Exchangers, for a list of
	natural exchangers that are exempt from the NIH Guidelines.
	Section III-F-7. Those genomic DNA molecules that have acquired a transposable element, provided the
	transposable element does not contain any recombinant and/or synthetic DNA.
	Section III-F-8. Those that do not present a significant risk to health or the environment (see Section IV-C-1-b-
	(1)-(c), Major Actions), as determined by the NIH Director, with the advice of the RAC, and following
	appropriate notice and opportunity for public comment.
	Appendix C-VII. The Purchase or Transfer of Transgenic Rodents
	Appendix C-VIII. Generation of BL1 Transgenic Rodents via Breeding
	The breeding of two different transgenic rodents or the breeding of a transgenic rodent and a non-transgenic
	rodent with the intent of creating a new strain of transgenic rodent that can be housed at BL1 containment will
	be exempt from the NIH Guidelines if:
	(1) both parental rodents can be housed under BL1 containment; and
	(2) neither parental transgenic rodent contains the following genetic modifications: (i) incorporation of more
	than one-half of the genome of an exogenous eukaryotic virus from a single family of viruses; or (ii)
	incorporation of a transgene that is under the control of a gammaretroviral long terminal repeat (LTR); and
	(3) the transgenic rodent that results from this breeding is not expected to contain more than one-half of an
	exogenous viral genome from a single family of viruses.
L	

Most experiments involving E. coli K-12 host vector systems and *Saccharomyces cerevisiae* and *Saccharomyces uvarum* host vector systems are exempt from the NIH Guidelines. If the answer to all 3 of the following questions are no, then the experiments are exempt according to Appendix C-II (for *E. coli* K-12) or Appendix C-III (for *Saccharomyces cerevisiae and Saccharomyces uvarum*).

Yes	No	
		Do any experiments involve Risk Groups 3, 4 or restricted organisms or nucleic acids from Risk Groups
		3, 4 or restricted organisms?
		Do any experiments involve introduction of genes coding for molecules toxic for vertebrates?
		Will there be any large-scale experiments (more than 10 liters of culture)?

Section B: <u>Exempt Recombinant DNA Experiments</u> (Continued)

Please include only information regarding **Exempt** rDNA experiments in the tables below.

	Host (s) Indicate the host(s) into which the recombinant material (rDNA, RNA, virus) will be introduced. Examples incluse: <i>E. coli</i> , <i>S.</i> <i>cerevisiae</i> , human/animal cells, whole animals, plants.	Species Subspecies, variety, serotype, strain.	Vectors Which host-vector system will be used for this research? Examples include: bacterial plasmids, yeast plasmids, cultured cell plasmid vectors, baclovirus, AAV, other viral vectors	DNA Sequence List names of genes or DNA segments that will be evaluated	Proteins List proteins produced if applicable
#1					
#2					
#3					
#4					
#5					
#6					

Yes	No	
		Will an attempt be made to purify any of the foreign gene products encoded by the gene?
		Will a virus-derived vector system that is engineered to be replication-incompetent be used?

Section C: Non-Exempt Recombinant DNA Experiments

This section describes experiments covered by the NIH Guidelines. Check the appropriate registration category(s) for your experiment.

Experiments that require IBC approval BEFORE initiation:

Section III-D-1-a. Introduction of recombinant or synthetic nucleic acid molecules into risk group 2 agents					
Section III-D-2-a. Introduction of DNA from risk group 2 (or 3) agents into non-pathogenic bacteria or lower					
eukaryotes					
Section III-D-3-a. Use of infectious risk group 2 virus (or defective virus plus helper virus) in tissue culture					
systems					
Section III-D-3-e. Use of infectious risk group 1 virus (or defective virus plus helper virus) in tissue culture					
systems					
Section III-D-4-a. Transfer of recombinant or synthetic nucleic acid molecules EXCEPT for >2/3 of eukaryotic					
viral genomes into any non-human vertebrate or invertebrate organism					
Section III-D-4-b. Transfer of recombinant or synthetic nucleic acid molecules from risk group 2 (or higher risk					
group) human or animal pathogens into whole animals					

Experiments that require IBC notification CONCURRENT WITH initiation:

Section III-E-1. Experiments involving the formation of recombinant or synthetic nucleic acid molecules
containing no more than 2/3 of the genome of any eukaryotic virus
Section III-E-2. All components derived from non-pathogenic prokaryotes and non-pathogenic lower eukaryotes
Section III-E-3. Experiments involving transgenic rodents

Some experiments require additional review/approval by NIH OBA before initiation:

Section III-A-1-a. Transfer of a drug resistant gene into microorganisms that do not acquire the gene naturally
that could compromise use of the drug to control disease in humans, veterinary medicine or agriculture
Section III-B-1. Cloning of genes for toxins with LD50 of > 10 ng/kg body weight

If your non-exempt research does not fall into any of the categories listed above, review Section III of the NIH Guidelines and use the space below to provide a brief description of the research and the appropriate NIH Guidelines referenced.

Section of the NIH Guidelines:

Description:

Section C: Non-Exempt Recombinant DNA Experiments (Continued)

Generation and Use of rDNA

Complete this section if you are generating and/or using non-exempt rDNA in your laboratory.

Answer questions 1-8 for EACH host-vector system.

Transgene

1. Describe the gene sequence(s) inserted into the recombinant vector:

a. Source of gene(s) (genus/species):

b. Do any of the gene sequences increase oncogenic potential, originate from an HHS or USDA select agent or toxin, transfer a drug resistance trait that has the potential to compromise the use of the drug to control disease or have the potential to increase the pathogenicity or virulence of a vector system? No

Yes, explain below:

c. Describe the function and activity of the transgene(s):

If you are planning on using an extensive number of transgenes, list classes.

If you are using a genome-wide approach, indicate the components of the constructs in the library or libraries.

2. If any of the above genes are from a viral source, do they compromise more than 2/3 of the viral genome? No

Yes, specify.

3. Will a deliberate attempt be made to obtain expression of the foreign gene encoded in the recombinant DNA or RNA?

Yes

4. Identify vector system - Please only describe one host-vector system:

Bacte	erial Plasmid
Aden	no-Associated Virus
Aden	novirus
Simp	ple Retrovirus
Lenti	ivirus
Virus	ses other than lentivirus, simple retrovirus, adenovirus or adeno-associated virus
Desc	cribe:

- 5. List host cell line or packaging cells for recombinant vector propagation:
- 6. Viral vector system(s)
 - a. What % of the viral genome remains?
 - b. Is a helper virus required for replication?

No

Yes

7. Target Recipient(s) - Indicate the recipient(s) of the DNA (check all that apply):

Bacterial Cells
Animal Cells in Culture
Animals
Modified Tissue Culture Cell Lines into Animals
Plant Cells
Plants
DNA Vaccine, specify target recipient(s)

8. Investigators assessment of risk – This work will be conducted at (check appropriate biosafety level):

Biosafety Level 1
Biosafety Level 2

If you need to describe additional non-exempt host-vector systems, please make a copy of pages 6 and 7 and answer questions 1 - 8 for each host non-exempt host vector system.

Section D: <u>Research with Potentially Infectious Biological Agents</u>

Complete this section if you are working with an agent that could cause an infection in humans. Provide the information requested below for each agent.

	Yes	No	Please Provide Details Below				
1. Name of agent (include genus, species, sub-							
species, strain, etc.):							
2. Will antibiotic resistance be expressed?							
3. Will toxin be produced?							
5. Will toxill be produced?							
4. Largest volume of agent to be cultured?							
5. Will agent be concentrated?							
6. If agent is to be concentrated, how will it be							
concentrated?							
7. How frequently will agent be manipulated?							
7. How nequentry will agent be manipulated?							
8. How will agent be inactivated?							
a. heat							
b. chemical							
c. other (list):							
9. Will agent be introduced into animals?							
y. Will agent be indoddeed into animaly.							
10. Have all personnel that will be handling this							
agent received appropriate biosafety training?							
If you need to describe additional potentially infecti	ous age	ents, p	blease make a copy of page 8 and answer				
questions $1 - 10$ for each potentially infectious agent.							

Section E: <u>Human and Non-human Primate Blood</u>, Body Fluids and Cell Lines

Identify the type and source of the materials to be used:

- 1. Samples to be manipulated (for human or non-human primate cells lines, indicate if cells are established or primary):
- 2. Source of samples:
- 3. If commercially obtained, please list vendor and specific cell lines:
- 4. Have all personnel who work with human material completed the appropriate bloodborne pathogens training program?
- 5. Is laboratory equipped with biological safety cabinet or other containment equipment to safely manipulate these materials?

If you need to describe additional materials or cell lines, please make a copy of page 9 and answer questions 1 - 4 for each cell line.

Section F: Toxins of Biological Origin

Complete this section if you are working with a toxin of biological origin. Provide the information requested below for each toxin.

- 1. Name of toxin:
- 2. Largest quantity in use and stored:
- 3. Describe how the toxin is stored:
- 4. Describe the toxin deactivation/disposal procedures:

If you need to describe additional toxins, please make a copy of page 10 and answer questions 1 - 4 for each toxin.

Section G: Protocol Specific Laboratory Safety

1. Personnel and Training

Please list all laboratory personnel involved in this protocol and indicate the dates of the required training. If training has not yet been scheduled, please indicate pending or TBD.

Name	Title	Date of Biosafety Training	Date of BBP Training	Other Protocol Specific Training

2. Containment Equipment

Please list type and location of containment equipment (e.g., biological safety cabinet) and date of certification if required.

Containment Equipment	Туре	Certification Date	
Biological Safety Cabinet			
Centrifuge with Safety Caps and Sealed Rotors			
Splash Guard			
Other:			

3. Equipment and Surface Decontamination

Please list the decontamination solution used, concentration, and frequency for various laboratory equipment and work surfaces.

	Decontamination		
Equipment and/or Work Surfaces	Solution	Concentration	Frequency
Biological Safety Cabinet			
Laboratory Bench			
Mechanical pipetter			

4. Spill Control

Please describe available laboratory spill control equipment and procedures.

5. Waste Decontamination

Please describe how potentially contaminated laboratory waste is decontaminated and subsequently disposed.