Microfabricated Actuators for Space Applications

Prof. Eui-Hyeok (EH) Yang Stevens Institute of Technology

Conference Keynote at Inter PACK 07

Vancouver, Canada, July 8-12, 2007

Microactuators and Nano/Micro Structures

Topics that are covered in this talk

Linear Microactuator

For active wavefront correction for space telescopes

Piezoelectric Microvalve

For micropropulsion for microspacecrafts

National Aeronautics and Space Administrati Jet Propulsion Laboratory California Institute of Technology

Topics that are covered in this talk

Linear Microactuator

For active wavefront correction for space telescopes

Piezoelectric Microvalve

For micropropulsion for microspacecrafts

National Aeronautics and Space Administrati Jet Propulsion Laboratory California Institute of Technology

Linear Actuator

Why Linear "Micro" actuator

- Extremely large (> 30 m), lightweight (< 1 kg/m²) space telescopes will enable substantial performance gains for future space-based imaging.
- Practical ultra-large, ultra-lightweight aperture systems will more likely be either segmented or flexible monolithic primary mirrors.
- Their large surface errors have to be corrected by active and adaptive wavefront controls.
- Using ultra-lightweight microactuators, the ultra-large mirror system can be designed to have very low areal density.

Applications of Linear Microactuators

Formation Flying Telescope With Highly Segmented Primary

Si Wafer Segments

MEMS Actuators

For segmented mirrors

E. H. Yang, R. Dekany and S. Padin, "Design and Fabrication of a Large Vertical Travel Silicon Inchworm Microactuator for Advanced Segmented Silicon Space Telescope (ASSiST)," *SPIE Photonics West, Micromachining and Microfabrication Conference*, San Jose, California, USA, January 2003.

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Applications of Linear Microactuators

S. N. Gullapalli, E. H. Yang and S. –S. Lih, "New technologies for the actuation and control of large aperture lightweight optical quality mirrors," *IEEE Aerospace Conference*, Big Sky, Montana, USA, 2003.

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Actuator Target Performance

 Max. Freq. 	~1 kHz
 Stroke 	> 1 mm
 Resolution 	<30 nm
Force	> 30 mN
Power	100 μW → 0
 Mass 	~ 100 mg

•The actuator is for correcting the surface figure of a segmented or thinmonolithic mirror (**mass density < 1 kg/m²**) after deployment in space.

•If microactuators weighing a100-mg are available, a hundred such microactuators per square meter will add only about 0.01 kg/m².

Actuator Target Performance

~1 kHz
> 1 mm
<30 nm
> 30 mN
100 μ W → 0
What if 100 g

mass density goal < 1 kg/m²

•If actuators weighing a100-g are used, a hundred such actuators per square meter will add about **10 kg/m²**.

Existing Linear "Micro" Actuators

- MEMS linear actuators [1~3]: 50~500µN max push force. No selflatching.
- Macro linear actuators [4]: 100g (mass)

R. Yeh, *et al.*, MEMS 01, Interlaken, Switzerland, Jan. 21-25, pp.260-264, 2001.
 H. N. Kwon, J. H. Lee, MEMS 02, Las Vegas, pp. 586-593, 2002.
 M. P. de Boer, *et al.*, *JMEMS*, Vol. 13, pp. 63-74, 2004.
 Q. Chen, *et al.*, MEMS 98, Heidelberg, Germany, pp. 384-389, 1998.

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

New Linear Microactuators

•R. Toda and **E. H. Yang**, "Development of Latching Type Large Vertical Travel Microactuator," *ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS and Electronic Systems (InterPACK '05)*, San Francisco, USA, July 17-22, 2005.

•R. Toda and **E. H. Yang**, "Fabrication and Characterization of Vertical Inchworm Microactuator," *Proceedings of 2004 ASME International Mechanical Engineering Congress and Exposition*, Anaheim, California, November 13-19, 2004.

National Aeronautics and Space Administratio Jet Propulsion Laboratory California Institute of Technology

2-Point Clamping to 4-Point Clamping

Self-Latched Linear Microactuator

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Schematics of Silicon Components

Modeling: Slider Force

Assuming the static friction coefficient is 0.24, the estimated push force <u>when actuating</u> is approximately 24 mN. In power-off mode, the estimated clamping force is approximately 48 mN.

0.29

Hwang et al., IEEE MEMS 06, Istanbul, Turkey, Jan. 2006, p.210.

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Fabricated Silicon Components

Assembly Sequence

Wiring Scheme

Fabricated and Assembled Actuator - 1st generation

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Actuator Test Setup

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Comb-Drive Actuation

Actuation: Measured Stroke

Actuation speed: 1 cycle / 2 second

After the 500-cycle actuation, the slider was moved by approximately 450 μ m. PZT voltage was 20V. There is no conceivable limit to the maximum stroke of our actuator other than constraints imposed by the slider length and external load.

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Fabricated and Assembled Actuator - 2nd generation

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Slider Motion (2nd Batch Actuator)

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Image Processing Using Matlab

Actuator images taken before and after 100-cycle actuation:

Image processing was performed to accurately calculate the slider movement, by comparing two different images taken before and after the actuation. The resolution from the calculation is approximately 50 nm.

- The response of the structure to applied stimulus was calculated by minimizing the total structure energy with respect to the rest of the parameters.
- For a 1 μm step, the maximum required force on all actuators is around 1 mN (rod stiffness of 10⁴ N/m).

General "bulk element" model for an arbitrary actuated lattice structure

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Director's Innovation Initiative

150

same prescribed shape; The average force on the actuators has been reduced by 7 orders of magnitude.

-50

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

100

150

50

Structure control to the Zernike* modes 2 and 4. Actuator displacement commands were calculated and were subsequently applied. The structure response to the commands was computed.

* In optics, the aberrations are often represented as a sum of special polynomials, called Zernike polynomials. Atmospheric random aberrations can be considered in the same way; however, the coefficients of these aberrations (defocus, astigmatism, etc.) are now random functions changing in time. A Zernike polynomial is defined in polar coordinates on a circle of unit radius.

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Actuator Performance Summary

	Target	Demonstrated	
Max. Freq.	~1 kHz	20-cycle/s	(1)
Stroke	> 1 mm	0.5 mm @ 130-cycle	(2)
Resolution	<30 nm	50 nm	(3)
Force	> 30 mN	48 mN	(4)
Power	100 μW	0 W when latched	
Size	~ 10 mm ³	14x7x0.6	
Mass		100 mg	

- (1) The higher-speed actuation (>20Hz/cycle) could not be demonstrated due to the frequency limit of the mechanical relay used for supplying electrical AC signal to actuators. In principle, the actuator structure with PZT and comb units can move at frequencies exceeding 1kHz.
- (2) The stroke of our actuator is limited only by the slier length and imposed force.
- (3) The measured resolution was limited by the image quality for image processing. Actual resolution (minimum step size) is expected to be better.
- (4) The clamping force was modeled using ANSYS.

Topics that are covered in this talk

Linear Microactuator

For active wavefront correction for space telescopes

• Piezoelectric Microvalve

For micropropulsion for microspacecrafts

National Aeronautics and Space Administrat Jet Propulsion Laboratory California Institute of Technology

Small Spacecrafts Requiring Microvalves

NASA's future Earth Science Mission 10s - 100s of S/C Microspacecraft typical envelope:

- 1~ 10 kg mass, ~10 cm³ volume, ~1 W power
- → Requiring microvalves capable of fast-actuation, low-leak, high-pressure and low-power operation

For Xenon-based Micropropulsion (High pressure)

• Leak Rate - 0.005 sccm He

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Generic Microvalve Requirements

Inlet Pressure - ~ 1000 psi

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Generic Microvalve Requirements

- Leak Rate 0.005 sccm He
- Inlet Pressure ~ 1000 psi
- <u>Actuation Speed</u> << 1 ms

Generic Microvalve Requirements

- Leak Rate 0.005 sccm He
- Inlet Pressure ~ 1000 psi
- <u>Actuation Speed</u> << 1 ms
- <u>Power</u> << 1 W
- Package Weight < 10 g
- <u>Temperature</u> 0 ~ 75 °C

Typical Normally-Closed Valves

Solenoid-based Microvalve for Micropropulsion

Moog Micro Valve prototype

Table 2: Performance Parameters of the MMV Prototype				
Parameter	MMV Performance			
Mass (gram)	7			
Size (cm ³)	1 (approx. 1 x 1 x 1 cm)			
Power (W)	0.7 (continuous) 4 W (open)			
Voltages (Vdc)	5			
Response (ms)	1.5 (open), 0.5 (close)			
Pressure (psi)	300 (nom), 1000 (max)			
Operating Temp(°C)	0-70			
Life	1,000,000 cycles*			
Leakage $< 10^{-4} \operatorname{sccs} \operatorname{GN}_2(\operatorname{after} 1 \operatorname{M} \operatorname{cycles})$				

*Test terminated voluntarily

Ref: Juergen Mueller, et. al., "An overwiew of MEMS-based micropropulsion developments at JPL", IAA 2001, B3-1004

S/C Power - 1 W

Limitations of Existing Microvalves

• Conventional microvalve technologies: mass/volume, power consumption

→e.g. 3-8 W to operate

 Typical MEMS-based valves: leak and/or narrow pressure range

→ e.g. 400 ms, 0.2 sccm (20 psi), 2 W

Microvalve Actuation Choices

	Thermo- pneumatic		Bi-metalic SMA		Electrostatic (w/spring)	Piezoelectric
	Governing Equations	$F = A P_2 (T_1 / T_2)$ $P = \text{pressure}$ $A = \text{area}$ $T = \text{temperature}$	$F = w t^{3} (\Sigma E) d / 1^{3}$ w = beam width t = beam thickness $\Sigma E = sum of moduli$ l = beam length d = deflection	$F = K A \delta$ $A = \text{ actuator area}$ $\delta = \text{ strain}$ $K = \text{ constant, based}$ on Flexinol TM data	$F = \varepsilon_0 A V^2 / 2g^2$ g = gap, V = voltage, A = area	$F = E_P A \delta$ $E_P = piezo modulus$ $A = area,$ $\delta = strain$
	Geometry	Gas Capsule 10 mm diameter 5 mm high	8 2mm × 2 mm Beams 100 μm thick, (50/50 Ni, Si)	SMA disk 10 mm diameter 5 mm high	Capacitor disk 10 mm diameter w/ spring	Piezo disk 10 mm diameter 5 mm high
-	Force	~ 1N	~ 2 mN	~ 14 kN	$\sim 2 \ \mu N$	~ 5 kN
	Max Deflection	-	10 µm	20 µm	5 µm	5 µm
	Power	high	high	high	low	low
	Actuation Time	long	long	long	short	short

Microvalve Design

Custom-Designed PZT-Stack

Microvalve Operation

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Fabrication Process

- Seat process

Etching: inlet & outlet holes

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Fabricated Microvalve

Fabricated Microvalve

Microvalve Housing for High-Pressure Test

E. H. Yang, C. S. Lee, J. Mueller and T. George, "Leak-Tight Piezoelectric Microvalve for High-Pressure Gas Micropropulsion," *IEEE/ASME Journal of Microelectromechanical Systems, Vol. 13, No. 5,* pp. 799-807, Oct. 2004.

 National Aeronautics and Space Administratio Jet Propulsion Laboratory California Institute of Technology

Test Bench

Test Bench

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Leak Performance

Flow Characteristics

Flow Characteristics

Microvalve for Liquid Flow Control

Leak Flow Characteristics

C. Lee, E. H. Yang, S. M. Saeidi and J. Khodadadi, "Fabrication, Characterization and Computational Modeling of a Piezoelectrically Actuated Microvalve for Liquid Flow Control," *IEEE/ASME Journal of Microelectromechanical Systems, Vol. 15, No. 3, June 2006.*

National Aeronautics and Space Administratic Jet Propulsion Laboratory California Institute of Technology

Valve Performance Summary

	Generic	Commercially available MEMS valves		Miniaturized Solenoid valve		
	Micro- propulsion requirements	Company A (Fluistor™ Microvalve)	Company B (High Pressure Shuttle, .187" Spring Biased)	Moog MMV	Our Piezoelectric Microvalve (Demonstrated)	
Leak Rate	< 5x10 ⁻³ sccm He	50 <i>µl/min</i> @ 100 psi, 30 °C	5 drops/hr	6x10 ⁻³ sccm N ₂ (after 1 M cycles)	5x10 ⁻³ sccm/He @ 800 psi (after 1 M cycles)	
Inlet Pressure Tolerance	~ 1000 psi	100 psi max	-	1000 psi max	0 ~ 1000 psi	
Actuation Speed	< 1 ms	1 s	-	2 ms	30 μ s (calculation)	
Power (on- state)	<< 1 W	1.5 W	-	4 W to open	3 mW @ DC	
Life Time	> 10 ⁶ cycles	-	-	10 ⁶ cycles (Test terminated voluntarily)	10 ⁶ cycles (Test terminated voluntarily)	

Summary

- MEMS/NEMS is ideally suited for Space applications since it offers the possibility of having highly capable devices with low mass, size and power consumption.
- Microactuator technologies have been developed for future space applications.
 - Linear microactuator technology: demonstrated the slider motion and modeled a pathfinder mirror structure.
 - Piezoelectric microvalves for high-pressure flow control: demonstrated fast, low power, leak-tight operation under high-upstream pressure.

Acknowledgments

Collaborators and Team Members: Kirill Shcheglov, Risaku Toda, Zensheu Chang, B. M. Levine, R. M. Morgan, Y. Bar-Cohen (NASA/JPL); J. Su (NASA/LaRC); J. Khodadadi (Auburn); S. Trolier-McKinstry (PSU); X. Jiang (TRS);

Sponsors: NASA Code R Micro/Nano Sciencecraft, NASA Gossamer S/T NRA, JPL RTD05-06, JPL DRDF02-05, NRO, NRO-DII04-05

Comb Drive Design

