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Introduction

Additive Manufacturing (AM)

« Computer-controlled manufacturing processes creating complex
3D objects layer-by-layer.

Directed Energy Deposition (DED)

* Process: A metal AM process using a high-energy laser beam to
melt and deposit powders, forming parts.
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« Complex Physics S
 Interactions: Involves heat transfer, fluid dynamics, and material Khanzadeh et al. (2019)
m pro perties . Scan direction
. . . . ‘—
E « Importance: Crucial for optimizing process parameters and part
m q u a||ty Laser beam
< « Growing Interest in Melt Pool Features Powder

« Significance: The melt pool directly influences the microstructure
and properties of the part.

* Focus: Increasing efforts on monitoring and controlling melt pool
characteristics to improve stability and performance. Base material
Eisenbarth et al. (2020)

Deposited track
Melt pool

Penetration
depth
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What is a Melt Pool? Why is it important to
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Background and Motivation

Melt pool depth is crucial in metal AM; however, it is not visible during the printing process.

Traditional methods for evaluating the melt pool size are time-consuming, costly, and often
destructive.

We propose a novel solution to predict the melt pool depth in DED AM process using point cloud
data from a laser scanner, integrated with machine learning (ML) techniques.

Our method automates the point cloud data processing step, eliminating the need for manual
intervention and enabling potential real-time, data-driven insights.

Non-destructive Evaluation
using point cloud data

' Track Width ' ML models to
— Predict Melt Pool
' Track Height '

Depth

t

Printing Parameters

Capture point cloud scan of

track using laser scanner
40
4

04 3 2 1 0
¥

Track Width
Track Height

Melt Pool Depth

Destructive Sample Cross-sectioning
for Optical Microscopy Evaluation
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Experimental Studies

As shown in Table 1, single-layer tracks (SS316L) with
varying laser power (W), scan speed (mm/min) and
powder feed rate (rpm), covering the three regimes ~
conduction, transition, and keyhole were printed and
analyzed.

All samples were fabricated on an Optomec Lens MTS 500
(DED Machine).

The track width, height, and melt pool depth were:

Observed using optical microscope (OM) for validation
studies

Calculated from the point cloud data scans captured
using a high-speed 3D laser scanner (KEYENCE LJ-7000
Series) as shown in the next slide.

Table 1: Process parameters employed in this study

Low High

Laser Power (W) 200 500
Scanning Speed (mm/min) 10 1000
Powder Feed Rate (g/min) 2.7 20.1

DED Machine lu

The experimental setup (a) DED machine (b) Inside view with
deposition head and mounted laser scanner

(a) Conduction (b) Transition (c) Keyhole
Example cross-sections of single tracks, illustrating the three

different regimes
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Single Track Print's Point Cloud Data
Denoising and Processing

(a) Filtered and Smoothed Point Cloud

X (mm)

(a) Raw Unfiltered Point Cloud (b) Post-RANSAC plane fitting to platform (c) Align normal of RANSAC fitted plane with (b)  Filtered Point Cloud (X-range*)

global z-axis

. " Height measurement
N o PCA Main Axis

-15 "

5’ 0.4 Ww
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Width 22
measurement ’

250 %] g 2.05
mm
52 5¢ 50 49 498 S0 S02 504 5$.6 508 S1 512 514 X (mm)
(d) The PCAmain axis of the printed trackis (e) Rotate point cloud using tilt angle (f) Denoised point cloud with initialized coordinates
adjusted to align with the global X-axis to align YZ-data points from start to

end of track
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2. Fit a Support Vector Regression (SVR) line to the

Evaluation of Track Width from Point Cloud

Scans

1. Assess the cross-sectioned X-range from the front
(YZ-field of view).

collective data points.

3. Plot the first-derivative of the SVR fit line and °
determine the global maxima and minima &'
corresponding to the points where the track z°

1
N

intersects with the substrate from both sides.

4. Track Width = Difference in Y, where global maxima

and global minima exist.

Scatter Plot: Yvs. Z

® Data
SVR Fit Line

Y (mm)
First Derivative of SVR Fit
i T T

-

ine

Min Derivative

Max Derivatiwe

Y (mm)
Second Derivative of SVR Fit Line
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Evaluation of Track Height using Point
Cloud Data i

L PO S O e R RS S 0.8
ieiperin g o
1. Asses the cross-sectioned X-range from the top (XY- Sl i i st b M zj:”
field of view). 4 g 4 I8 2 2 8 a5 4 s
. L : : E Y [}
2. Examine all distributed data points and evaluate their ¢
standard deviation in the Z-direction. :
3. Plot the first-derivative of the Z-standard deviation over % _
the X-range and determine the global maxima and § o oos 1 15 2 25 3 a5 4 as
N Y(mm)

minima.

4. ldentify the Z-values of the cross-sectioned point cloud
that correspond to the Y-values at those maxima and
minima, naming them (z_at_maxima and z_at_minima). 3 ,,.

1 1 1 1 K 1 1 -
0 0.5 1 1.5 2 25 3 3.5 “ 4.5

First Derivative of Z Standard Deviation over X range

dY (mm)

ol
4
=)
[N

5. Track Height = Difference between the lower Z-value ) e
amongst the two (z_at_maxima or z_at_minima) and g ———— T
the point cloud’s maximum Z-value. T

4.5

Y{mm) .
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ML Models for Melt pool Depth Estimation

» Objective: Train ML models to predict the melt pool depth.

« Trained models: Linear Regression (LR), Decision Tree (DT), Support Vector Regression (SVR),
Gaussian Process Regression (GPR), and Neural Networks (NN).

« Dataset split (70% training, 30% testing to validate model generalization).

« Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were used to rate the
prediction performance of the regression models.

Printing Parameters 1
* Laser power MAE = _Zlcmi § Cpil
* Scan speed i=1
* Powder feed rate Machine
Learning (ML) RMSE

. . Models n
Point Cloud Scan Data 1 2
< C..— G
= (Cne =
i=1

wn
Q
Q
c
()
—
Q
Y
C
O
O
©
=
c
o
o
-
(@)
c
=
()
)
=
(@)
c
L
c
o)
wn
Q
(@]
‘©
c
o
k=
©
c
—
(]
'}
c

& Computers and Information in Engineering Conference

-
N
@)
N
LL
¥
O
I_
L]
0

L
7
J

* Average Track Width =
* Average Track Height
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Results: Melt pool Depth Predictiona .

1.8 | —+— Optical Microscope data

* There is a good agreement between the measured track width and
height from point cloud using automated processing steps and the
ground truth measurements obtained using an Optical Microscope.

n
T

Track height (mm)
;

-

e
@
T
——

» Gaussian Process Regression (GPR) resulted in best performance.

e
)

« Study Outcome:

» Improved ML model performance by incorporating track width and
height from point cloud data, resulting in a 63.78% reduction in
MAE and a 19.9% in RMSE compared to exclusive reliance on
process parameters.

I
'S

1 L L L I L L L I ]
[¢] 5 10 15 20 25 30 35 40 45 50
Track number

—#— Point Cloud data

Track width (mm)
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E Train Te St Validation Predicted vs. Actual Plot
Model Used MAE | RMSE | MAE | RMSE i A
m (m) | wm) | wm) | @m) | Y T TR
Linear 65.76 | 67.62 | 5220 | 71.03 5 wr Track number
Regression - % S

Decision Tree 5177 | 7582 | 44.10 | 64.10 GPR Model Inputs MAE(pm) | RMSE(pm)

SVR (linear) 4845 | 67.82 | 49.36 | 71.46

Predicted response
2
-

Laser Power, Scan Speed, Powder Feed

SVR (Quadratic) | 29.30 | 48.78 | 2629 | 3433 | | i Rate, Track Width, Track Height 18.89 25.50
GPR 2325 | 38.19 | 18.89 | 2550
(Exponential) or St e Laser Power, Scan Speed, Powder Feed
Neural Network | 3199 | 4762 | 27.91 | 3759 i W W B % Rate 52.15 31.85

True response
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Conclusions and Future Work

 Point cloud data significantly improves prediction accuracy over using only
process parameters, eliminating the need for destructive testing to determine melt pool
depth.

» Specifically, the GPR model's predictions of melt pool depth had a mean absolute
percentage error (MAPE) of around 4%, indicating up to 96% accuracy.

* Introduced a promising automated approach that removes the need for manual
intervention in filtering and denoising point cloud scans.

« Future work will focus on integrating real-time monitoring tools to further improve
prediction efficiency and accuracy.
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Supplementary Information

Gaussian Process Regression (GPR)

For a given set of observations y and inputs X, the marginal likelihood L(y|X, 8) is the probability of observing the
data under the model with a given set of hyperparameters 6. In GPR, this likelihood is Gaussian, given by:

L(y|X,0) = N(y; 0,K + o7])
where:
* yisthe vector of observed outputs,
- K is the covariance matrix defined by the kernel function k(x;, x;) for the inputs X,
o2 is the noise variance, and
* 1 is the identity matrix. My

15 H

The exponential kernel, is defined by:
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k(xi,xj) = G]Zcexp(— ”Xi—;Xj”) |
where: -
. a,zr is the signal variance ( a hyperparameter) °
» ||Ix; — ;|| is the Euclidean distance between the input points x; and x;, E

« {isthe length scale ( a hyperparameter)
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