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Introduction
• Additive Manufacturing (AM)

• Computer-controlled manufacturing processes creating complex 
3D objects layer-by-layer.

• Directed Energy Deposition (DED)

• Process: A metal AM process using a high-energy laser beam to 
melt and deposit powders, forming parts.

• Complex Physics

• Interactions: Involves heat transfer, fluid dynamics, and material 
properties.

• Importance: Crucial for optimizing process parameters and part 
quality.

• Growing Interest in Melt Pool Features

• Significance: The melt pool directly influences the microstructure 
and properties of the part.

• Focus: Increasing efforts on monitoring and controlling melt pool 
characteristics to improve stability and performance.

Eisenbarth et al. (2020)

Khanzadeh et al. (2019)
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Yining et al. (2020)

Khanzadeh et al. (2017)

Lim et al. (2021)

Jeon et al. (2023)

Peralta et al. (2016)
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What is a Melt Pool? Why is it important to 
study?
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Background and Motivation
• Melt pool depth is crucial in metal AM; however, it is not visible during the printing process.

• Traditional methods for evaluating the melt pool size are time-consuming, costly, and often 
destructive.

• We propose a novel solution to predict the melt pool depth in DED AM process using point cloud 
data from a laser scanner, integrated with machine learning (ML) techniques.

• Our method automates the point cloud data processing step, eliminating the need for manual 
intervention and enabling potential real-time, data-driven insights.
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Experimental Studies
• As shown in Table 1, single-layer tracks (SS316L) with 

varying laser power (W), scan speed (mm/min) and 

powder feed rate (rpm), covering the three regimes ~ 

conduction, transition, and keyhole were printed and 

analyzed.

• All samples were fabricated on an Optomec Lens MTS 500 

(DED Machine).

• The track width, height, and melt pool depth were:

• Observed using optical microscope (OM) for validation 

studies

• Calculated from the point cloud data scans captured 

using a high-speed 3D laser scanner (KEYENCE LJ-7000 

Series) as shown in the next slide.

Low High

Laser Power (W) 200 500

Scanning Speed (mm/min) 10 1000

Powder Feed Rate (g/min) 2.7 20.1

Table 1: Process parameters employed in this study

Example cross-sections of single tracks, illustrating the three 

different regimes

The experimental setup (a) DED machine (b) Inside view with 

deposition head and mounted laser scanner 
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Single Track Print’s Point Cloud Data 
Denoising and Processing
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Evaluation of Track Width from Point Cloud 
Scans

1. Assess the cross-sectioned X-range from the front 
(YZ-field of view).

2. Fit a Support Vector Regression (SVR) line to the 
collective data points.

3. Plot the first-derivative of the SVR fit line and 
determine the global maxima and minima 
corresponding to the points where the track 
intersects with the substrate from both sides. 

4. Track Width = Difference in Y, where global maxima 
and global minima exist.
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Evaluation of Track Height using Point 
Cloud Data

1. Asses the cross-sectioned X-range from the top (XY-
field of view).

2. Examine all distributed data points and evaluate their 
standard deviation in the Z-direction.

3. Plot the first-derivative of the Z-standard deviation over 
the X-range and determine the global maxima and 
minima.

4. Identify the Z-values of the cross-sectioned point cloud 
that correspond to the Y-values at those maxima and 
minima, naming them (z_at_maxima and z_at_minima). 

5. Track Height = Difference between the lower Z-value 
amongst the two (z_at_maxima or z_at_minima) and 
 h  po    clou ’s      u   -value. 
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ML Models for Melt pool Depth Estimation
• Objective: Train ML models to predict the melt pool depth.

• Trained models: Linear Regression (LR), Decision Tree (DT), Support Vector Regression (SVR), 
Gaussian Process Regression (GPR), and Neural Networks (NN).

• Dataset split (70% training, 30% testing to validate model generalization).

• Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were used to rate the 
prediction performance of the regression models.
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Results: Melt pool Depth Prediction

Model Used

Train Test

MAE 

(𝜇m)

RMSE 

(𝜇m)

MAE 

(𝜇m)

𝑅𝑀𝑆𝐸
(𝜇𝑚)

Linear 

Regression

65.76 67.62 52.20 71.03

Decision Tree 51.77 75.82 44.10 64.10

SVR (linear) 48.45 67.82 49.36 71.46

SVR (Quadratic) 29.30 48.78 26.29 34.33

GPR 

(Exponential)

23.25 38.19 18.89 25.50

Neural Network 31.99 47.62 27.91 37.59

GPR Model Inputs MAE(μm) RMSE(μm)

Laser Power, Scan Speed, Powder Feed 

Rate, Track Width, Track Height
18.89 25.50

Laser Power, Scan Speed, Powder Feed 

Rate
52.15 31.85

• There is a good agreement between the measured track width and 
height from point cloud using automated processing steps and the 
ground truth measurements obtained using an Optical Microscope.

• Gaussian Process Regression (GPR) resulted in best performance.

• Study Outcome:

• Improved ML model performance by incorporating track width and 
height from point cloud data, resulting in a 63.78% reduction in 
MAE and a 19.9% in RMSE compared to exclusive reliance on 
process parameters. 
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Conclusions and Future Work

• Point cloud data significantly improves prediction accuracy over using only 
process parameters, eliminating the need for destructive testing to determine melt pool 
depth.

• Specifically, the GPR model's predictions of melt pool depth had a mean absolute 
percentage error (MAPE) of around 4%, indicating up to 96% accuracy.

• Introduced a promising automated approach that removes the need for manual 
intervention in filtering and denoising point cloud scans.

• Future work will focus on integrating real-time monitoring tools to further improve 
prediction efficiency and accuracy.
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Youmna Mahmoud
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Supplementary Information 

For a given set of observations 𝒚 and inputs 𝚾 , the marginal likelihood ℒ 𝑦 𝚾, 𝜃  is the probability of observing the 

data under the model with a given set of hyperparameters 𝜃. In GPR, this likelihood is Gaussian, given by:

ℒ 𝑦 𝚾, 𝜃 = 𝒩(𝑦; 0, 𝚱 + 𝝈𝒏
𝟐𝚰)

where:
• 𝑦 is the vector of observed outputs,

• 𝚱 is the covariance matrix defined by the kernel function 𝑘 x𝑖 , x𝑗  for the inputs 𝚾 ,

• 𝝈𝒏
𝟐 is the noise variance, and

• 𝚰 is the identity matrix.

The exponential kernel, is defined by: 

𝑘 x𝑖 , x𝑗 = 𝝈𝒇
𝟐exp(−

x𝑖 − x𝑗

ℓ
)

where:

• 𝝈𝒇
𝟐 is the signal variance ( a hyperparameter)

• x𝑖 − x𝑗  is the Euclidean distance between the input points x𝑖 and x𝑗,

• ℓ is the length scale ( a hyperparameter)

Gaussian Process Regression (GPR)
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