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ABSTRACT 

 

Variability in properties of heterogeneous composites arises from manufacturing processes, service 

loads, or environmental factors, significantly impacting macroscopic structural performance. 

Uncertainty Quantification (UQ) offers a framework for measuring these uncertainties and 

evaluating their effects, enhancing confidence in simulation outcomes. Comprehensive UQ can 

facilitate certification by simulation for composite materials, manufacturing processes, and 

aerostructures, where substantial experimental efforts are currently needed. 

This research delves into UQ methods for computational efficiency and material variability 

assessment. It explores innovative artificial intelligence and machine learning approaches for a more 

versatile and efficient microstructure homogenization framework during UQ. Initially, the study 

presents a method for reducing the computational load of the Monte Carlo (MC) technique for 

uncertainty propagation by adopting the Quasi Monte Carlo (QMC) method with various low-

discrepancy sampling approaches. The QMC technique demonstrates a significant increase in 

convergence speed compared to MC. Additionally, convolutional neural networks are shown to infer 

parameters describing random fields modeling a material’s spatial property variability from a 

limited number of experimental tests with full-field strain measurement. Defining random fields for 

highly anisotropic materials typically necessitates extensive experimental characterization or 

computationally intensive multi-scale simulations. Surrogate models utilizing neural networks are 

often developed for stochastic heterogeneous materials to decrease computational costs. However, 

these models are usually microstructure-specific, and calibrated models are non-transferable. The 

research demonstrates that the transformer neural network architecture can generate knowledge 

about various microstructures and constituents, allowing the transformer to serve as a 

computationally efficient homogenization surrogate model applicable to multiple microstructures. 

The transformer network accurately predicts the nonlinear and history-dependent response of 

elastoplastic composites using a learned and adaptive microstructure encoding. These predictions 

are considerably faster than finite element method-based approaches, saving orders of magnitude in 

computational time. 


