

Research on Microfluidics and Graphene/CNTs in EH Yang Group

Dr. E. H. Yang Professor, Mechanical Engineering Department Stevens Institute of Technology

Presentation at NASA Goddard Space Flight Center December 17th, 2013

EH Yang Group: Research Areas

Fundamentals and device applications

Fisher

Choi

Major Collaborators @ Stevens

Current Group Members:

Outline of Presentation

• Smart Polymer Microfluidics

- Overview: Wetting, PPy, EWOD
- Droplet Manipulation on PPy(DBS): DCM Droplets, Magrangoni effects
- Applications: Lab on a Chip, Oil/water Separation

• Graphene and CNT Architectures

- CVD Growth and Characterization: *Domain Growth Mechanism, Annealing Effect*
- Photodetection using CVD Graphene: Suspension of Graphene; Enhanced Photoelectric Effect
- Graphene-CNT Composites for Energy Storage: Seamless Growth; Suppressed Graphene Etching

Outline of Presentation

• Smart Polymer Microfluidics

- Overview: Wetting, PPy, EWOD
- Droplet Manipulation on PPy(DBS): DCM Droplets, Magrangoni effects
- Applications: Lab on a Chip, Oil/water Separation
- Graphene and CNT Architectures
 - CVD Growth and Characterization: Domain Growth Mechanism, Annealing Effect
 - Photodetection using CVD Graphene: Suspension of Graphene; Enhanced Photoelectric Effect
 - Graphene-CNT Composites for Energy Storage: Seamless Growth; Suppressed Graphene Etching

Wetting

- Wetting: The ability of a liquid to maintain contact with a solid surface.
- The wettability is determined by a force balance between adhesive and cohesive forces.
- At the interface between a liquid and a gas, forces develop in the liquid surface that causes the surface to behave as if a "membrane" were stretched over it.

Water beads on a fabric that has been made non-wetting by chemical treatment.

Droplet Microfluidics

. removed.

Electrowetting for Droplet Manipulation

- In electrowetting on dielectric (EWOD), an externally added electrostatic charge modifies the surface tension at the fluid-surface interface.
- The effect of a potential V on the contact angle is then determined by the following:

$$\cos\theta(V) - \cos\theta_o = \frac{\varepsilon_r \varepsilon_o}{2\gamma_{\rm LG} t} V^2,$$

where

- θ (theta) is the contact angle,
- θ_{o} (theta-nought) is the equilibrium contact angle at V = 0,
- V is the electric potential across the interface (V),
- ε_r (epsilon) the dielectric constant of the dielectric layer,
- ε_{o} (epsilon) is the permittivity of a vacuum (8.85 × 10⁻¹² F/m), and *t* is its thickness (m).

Electrowetting on Dielectric

Electrowetting on Dielectric

Advanced Liquid Logic, Inc.

Advanced Liquid Logic powered by Digital Microfiluidics	Home	Applications & Products	Technology	About Us	Contact Us	
Home Newborn Screening						

Newborn Screening

Advanced Liquid Logic has developed the LSD-100, an automated newborn screening system capable of rapidly and simultaneously performing 5 assays on 40 dried blood spot extracts along with 4 controls & 4 calibrators.

Components of the LSD-100 Newborn Screening System

The Newborn Screening Analyzer

- · A small form-factor (8"x13"x20") bench-top instrument
- Houses electronics, thermal components and optical detection
 systems
- Up to four instruments controlled from one PC, providing scalability

Digital microfluidic cartridge

- Capable of rapidly and simultaneously performing 5 assays on 40 dried blood spot extracts along with 4 controls & 4 calibrators
- · Minimal hands on time for reagent loading
- Disposable under standard biohazard procedures
- Reagents for each assay type are formulated at Advanced Liquid Logic under controlled manufacturing practices.

More Information

For additional information on the LSD-100 please contact Advanced Liquid Logic.

Contact Us

http://www.liquid-logic.com/lsd-100

Voltage issues

Operating with a AAA Battery?

Hand-held device powered by a AAA battery

Conjugated Polymer

- Conjugated polymer has alternating single and double bonds between carbon atoms on the polymer backbone.
- Conductive (1 to 10⁵ S/cm) when doped
- Chemical/electrochemical oxidation or reduction facilitates reversible doping.

Polyacetylene

Polyaniline

Polypyrrole

Tunable Wetting on PPy(DBS)

Reduced PPy(DBS) surface exhibits higher surface energy than the oxidized case.

Langmuir, 2011, 27, 4249-4256

Striking Dynamic Behavior!

Droplet Flattening: Why?

Reduced PPy(DBS) surface exhibits higher surface energy than the oxidized case.

Marangoni Effect and Oleophobicity

Droplet Transportation on Two Electrodes

Manuscript in preparation

Controlled Stop and Go (Tilted)

Low Voltage LOC Device

Low-cost, hand-held device (powered by a AAA battery) containing complex liquid handling assays.

Portable Devices for...

- Sample dilution and purification
- Molecular separation
- DNA/RNA analysis
- Particle sensing and detection
- Biomolecule synthesis

Capture and Release Oxidized PPy(DBS) Flat Microstructured PPy(DBS) PPy(DBS) Oxidized PPy(DBS) **Oxidized State Oxidized State** 90° 90° Glass Glass (a) Approaching (b) Contacting **Reduced State Reduced State** 0.5° 90° Oxidized PPy(DBS) Oxidized PPy(DBS) (a) Capture (b) Transport (c) Release Glass Glass (c) Capturing (d) Transporting www.www www.ww **WARRAN** Reduced PPy(DBS) Reduced PPy(DBS) Oxidized Ppy(DBS) Au Glass Reduced Ppy(DBS) Glass Glass Manuscript in preparation (e) Releasing (f) Settling

Outline of Presentation

- Smart Polymer Microfluidics
 - Overview: Wetting, PPy, EWOD
 - Droplet Manipulation on PPy(DBS): DCM Droplets, Magrangoni effects
 - Applications: Lab on a Chip, Oil/water Separation
- Graphene and CNT Architectures
 - CVD Growth and Characterization: *Domain Growth Mechanism, Annealing Effect*
 - Photodetection using CVD Graphene: Suspension of Graphene; Enhanced Photoelectric Effect
 - Graphene-CNT Composites for Energy Storage: Seamless Growth; Suppressed Graphene Etching

Material Properties

Property	Graphene	CNT	Compare to
Elastic Modulus	1060 GPa	~1000-5000 GPa	1220 GPa (Diamond)
Intrinsic Fracture Strength	130 GPa	13-53 GPa	6.8 GPa (UH-MW- Polyethylene)
Charge Mobility	2,000-200,000 cm²/V-s	100,000 cm²/V-s	8,500 cm²/V-s (GaAs) or 1,000 cm²/V-s (Si)
Resistivity	10 ⁻² -10 ⁻⁸ Ω-cm	~10 ⁻² Ω-cm	1.59 x 10 ⁻⁸ Ω-cm (Ag)
Thermal Conductivity	I 5000 W/m-K (SWNT) tivity 5000 W/m-K (SWNT) >3000 W/m-K (MWNT)		400 W/m-k (Cu) or 2,200 W/m-K (Diamond)
SSA	2630 m²/g	50-1315 m²/g	XX
Transmission	97.7%	N/A	85-92% (ITO)

Graphene Development Roadmap

N AT U R E | VO L 4 9 0 | 1 1 0 C T O B E R 2 0 1 2

Graphene Optoelectronics – Device Concepts

REVIEW ARTICLE

NATURE PHOTONICS DOI: 10.1038/NPHOTON.2010.186

Chip-Integrated Graphene Photodetector

Figure 1 | A waveguide-integrated graphene photodetector. a, Schematic of the device. The silicon bus waveguide fabricated on an SOI wafer is planarized

CVD Graphene Growth

Monolayer Growth

Domain Study

- CVD graphene → **Polycrystalline**
- Electronic and mechanical properties affected by presence of grain boundaries.
- Key challenge \rightarrow control of domain

а

С

[-10

- Orientatior
- Size

(00-1)

2-lobed symmetrical curvilinear graphene domains specifically on Cu{100} surface orientations; its growth and morphology are dependent on the underlying Cu crystal structure → important towards tailoring graphene properties via substrate engineering *Scientific Reports, (3) 2571 (2013)*

Graphene - Annealing Effect

Ar:H₂ annealing

Oxygen annealing

Pre-Annealing

Annealingbased processes create morphological changes and directly influence doping and strain

Carbon, (64), 35, (2013)

Graphene Photodetectors

Graphene Photodetector Research

- Study of
 - Fermi-level modulation at metal contacts,
 - Electrical doping
 - Photo-thermoelectric mechanism
 - Top-gated phototransistors
 - Hot electron generation
 - a. Nat. Nano 4, 839-843 (2009).
 - b. Nano Letters 9, 1039-1044 (2009).
 - c. Nano Letters 10, 562-566 (2009)
 - d. Nat. Photon. 4, 297-301 (2010).
 - e. Nano Letters 9, 1742-1746 (2009)
 - f. Nat. Photon. 7, 53-59 (2013)

Graphene Micro Ribbons for Photodetectors

2

0

4 6

X[µm]

8 10 12

2

4

X[µm]

6

8

Scientific Reports, (3), 2791 (2013)

Photoelectric Effect vs. Photo-Thermoelectric Effect

- The fully-suspended CVD graphene is *dominated by the faster photoelectric effect.*
- These findings are promising towards wafer-scale fabrication of graphene photodetectors approaching THz cut-off frequencies.

Wavelength Tunable Photodetector?

For strain tuning, we need

- 1) controlled electrostatic actuation of suspended graphene microribbons.
- 2) In situ SEM imaging of the actuation.

Future: Tunable Photodetector

Develop microactuators to induce in-plane strain in a suspended graphene, MoS₂, or WS₂ microribbon:
 Toward a photodetector with strain-tuning capability for opening/closing of the bandgaps.

Graphene-CNT Architecture

Avoid self-aggregation

•Maximize the energy storage capacity

Supercapacitor: An electrochemical capacitor with

- High power density (~14 kW/kg)
- Long cycle life (over 100,000 cycles)
- Fast charge storage

Ideal for energy storage that undergoes frequent charge and discharge cycles at high current.

Nanotechnology, 23, 015301 (2012)

Seamless Growth of CNTs from Graphene

CNT Root in Graphene

Graphene Planes

1650

Chemistry of Materials, 25(19), 3874-3879 (2013)

Carbon Feedstock: C₂H₄

Thermal Treatment: 800°C *CNT Growth:* 800°C

Two stage growth

- 1. C_2H_4 and graphene \rightarrow bottom side
- 2. $C_2H_4 \rightarrow \text{top side}$

CNT Catalyst Thermal Treatment

800°C

700°C

800°C

Hydrogenation active Low density nanoparticles

700°C

Hydrogenation suppressed High density nanoparticles

Suppressed Graphene Etching During CNT Growth

(a) intact graphene substrate and (b) without graphene (etched away)

By using C_2H_4 gas as a hydrocarbon source for CNT growth under low temperature (700°C) and controlled gas ratio conditions, the catalytic hydrogenation reaction was dramatically suppressed to avoid etching of graphene during the CNT growth process.

Multi-stack GCG Supercapacitors

Future: MX₂/Graphene or Si Hybrids

PERSPECTIVE 5JULY2013|VOL499|NATURE|419

NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2013.100

Contact

NATURE MATERIALS DOI: 10.1038/NMAT3386

LETTERS

Monolayer MoS-

Figure 1 | Cross-sectional TEM of graphene-hBN heterostructures. a, Schematic of one of our devices: two graphene monolayers (dark grey) are interlaid

□ Graphene/CNTs and 2D van der Waals layers

- Investigate graphene and carbon nanotubes, seeking lightharvesting and energy storage applications.
- With further improvement in fabrication techniques and using graphene's springboard, new 2D materials are expected to create new scientific frontiers.

□ Droplet Microfluidics / Conjugated Polymers

- In microfluidic devices where surface effects are important, liquid droplets can be manipulated by tuning the surface properties.
- This tunable wetting technology is a pathfinder for next generation digital microfluidics, oil separation and antimicrobial surfaces.

Question?