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Well, thank you, President Farvardin, and thank you, Stevens Institute, for the opportunity to come 

here and spend what’s been a very interesting day for me. I’ve been on the listening side a lot, and 

I’ve learned quite a bit about some of the interesting things going on here on campus. What I want 

to do today is — well, let me introduce it this way. I’ve always been interested in intelligence. Who 

isn’t?

And how it works — no, not the CIA kind of intelligence. Fundamentally, there are two ways to 

study it, and I’ve considered both. One is we could try to figure out what makes people so darn 

intelligent. And the other is we can try to build computers that are intelligent. And so those seem 

to be the two obvious approaches to studying it. And today, what I want to talk about is something 

kind of at the intersection of the two, but it really has more to do with trying to study the brain.

A video of Dr. Tom Mitchell’s lecture, which includes his slide presentation, is available at stevens.edu/lecture.
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The kind of question that I’d like us all to think about for the next 45 minutes is: How does the 

brain represent meaning of language, and how does it process language to get that meaning? So 

if you think about it, if I get you to think about the word clicker or the word mother, it’s the same 

brain; it’s just that when you thought about clicker, there was one pattern of neural activity, and 

when you think about mother, it’s a different pattern of neural activity.

So I want to start there, because if we could understand 

something about the neural code for representing those different 

meanings, it would be at least a starting point for trying to 

understand thinking and language and so forth. So those are the 

questions we’ve been looking at for the last decade or so. And 

when I say we, I mean a number of colleagues here, including 

my primary colleague, Marcel Just, up at the top there, who is a 

professor in our psychology department who took me under his 

wing in the late ’90s and started teaching me about functional 

magnetic resonance imaging, which he knew a lot about at the 

time and still does.

So he’s taught me most of what I know about that. But anyway, the work I’m going to present here 

is due to this collection of people. 

So suppose you were interested in studying what patterns of neural activity represent meaning. 

One way you could do it is put people in an fMRI scanner and show them stimuli like these, which 

we show people. Sometimes we show them pictures of things or words. Sometimes we show them 

words plus pictures. But one way or another, we try to get them to think about some concrete 

concept, some concrete noun.

And when we do that, and we image their brain, we get data that looks like this. This is — it looks 

like four images — but it’s actually four pieces of a three-dimensional brain image, where the top 

of the screen is the back of the head, the bottom of the screen is the front of the head. And this 

is the result of one person looking at the stimulus up in the corner there, bottle. So this is what 

one person’s brain activity looks like. And the thermometer here on the side shows red means high 

neural activity, and green means average neural activity.

So that’s what it looks like. That’s the kind of data we can acquire. You might ask me, Does it look 

any different if, instead of bottle, we show them clicker? What I can show you is the mean activity 

if we average over 60 different stimuli, and that looks like this. So you can see bottle kind of like 
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your average word, but maybe there are some differences. And if I subtract out this mean activity 

from the activity for bottle, then I get the residue as this.

And so you can see, well, there are some differences. Maybe it’s noise; maybe it’s signal. But 

unless I say otherwise today, most of the time I’m going to be analyzing images like this, which 

are the difference between default neural activity and activity for a particular stimulus. So that’s 

what our data look like. So again, if you’re interested in the question of, how does neural activity 

represent meaning, then one of the first things you might try — and we did — is to train a machine 

learning system to take as input a brain image and make a classification of that brain image 

according to whether the stimulus that that person is thinking about is A or B, say hammer or 

bottle. So one of the first things we did was try to train these kinds of classifiers. We found that in 

fact this does work; you can train a classifier.

You show it examples. Here’s the brain image when they’re 

thinking about bottle. Here’s another brain image when 

again they’re thinking about bottle. Here’s one when they’re 

thinking about hammer. Given enough of those labeled 

training examples, a system can then learn a classifier so 

that you can give it a new brain image and try to tell you 

which of the two stimuli a person is looking at.

So when we tried this, we found, in this case — training a 

classifier to distinguish whether the person was thinking 

about tools, hammer, screwdriver, et cetera, versus 

buildings, palace, house, castle — then, in fact, the 

classifier worked quite well. Each of these black bars represents a different participant in our 

study, and the height of the black bar indicates how accurately we could classify beyond the 

training data, if we gave it after training new brain images to classify.

And so you see, for our best subjects, we were getting very high accuracy. Even for our worst 

subjects, we were getting better than the 50 percent that we would’ve gotten at chance. By the 

way, these differences among subjects tend to correlate with how much head motion we see them 

do in the scanner. Okay. So this is good. What this means, and the way I think of these trained 

classifiers, is they’re a wonderful virtual sensor of information content.

So just like fMRI scanners are a wonderful invention — because for the first time, we can look 

inside people’s heads and see the neural activity — these classifiers are also wonderful, because 

“... if we could understand 
something about the neural 
code for representing 
those different meanings, 
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they let us see, not just the neural activity, but what’s the information coded in the mental state of 

that neural activity? So that means we can use these to answer very interesting questions.

An interesting neuroscience question is: Are these representations similar across brains? Is your 

neural representation the same as mine? Or are we all different? And we can turn this into the 

corresponding machine learning question, which is: Can we 

train our classifier using the people on this side of the room 

and then use it to successfully decode the people on that 

side of the room?

And in fact, we ran that experiment, and the answer 

is absolutely, Yes. So here again, you see in black the 

accuracies we get from these different subjects if we train 

and test on data from that one subject. But here now you see 

in white the accuracy that we get, say, for participant 1, if 

we train using zero data from participant 1, but instead use 

all the data from all the other participants to train.

And you see that, in fact, on average the classification 

accuracy is really not very much different in the two cases. 

This is, to me, an astounding result. When we started this, 

I had no idea that we would find a result like this. What it 

really means is that, even though we all have very different 

backgrounds, very different life experiences, somehow we 

have a shared physical, spatial pattern of neural activity that 

encodes these different words.

We can run a similar kind of analysis by asking, What about 

cross-language? And in fact, we found bilingual Portuguese/

English people. We trained them when we presented words 

in English. Then we tested whether we could decode the corresponding words translated into 

Portuguese. Again, the answer is yes, which is an indication that what our classifiers are actually 

learning is the neural activity that really corresponds to the conceptual representation, the real 

meaning, not the surface form of casa versus house, but the meaning that it’s house in both cases.

Similarly, for words and pictures, we did the same thing, showing that we could train using words 

and then decode by showing pictures of these objects, decode which item was in the picture. We 
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also found that different kinds of words, concrete nouns, meaning nouns describing things you can 

physically touch, were what we began with, but then we got interested in emotions. We found that, 

in fact, the patterns of neural activity for emotion words like anxiety, love, hate, angst are equally 

decodable and shared across people.

We found that abstract nouns like justice and democracy, however, were much more difficult to 

decode across people and even within a person. So it turns out that, for some reason, you might 

speculate which reason, words like democracy, we can’t even get a stable-enough, repeatable-

enough, neural signature to train a classifier within a single person.

For verbs, we thought, Oh now we’ll do verbs. And we found we couldn’t. We presented individual 

verbs and tried to classify those and found it didn’t work. But then we later found that if we took 

the same verbs and we put them inside a sentence, then they were as decodable as the nouns. So, 

for example, we had the verb cut and the verb heal. Presented in isolation, it was impossible to 

train our program to reliably distinguish those verbs. But if, instead, we used the stimulus doctors 

cut and doctors heal, then the verbs were as distinguishable as nouns.

So there’s something about verbs that, in the human brain, requires a context, a grounding, in 

order to get a stable neurosignature. Interesting. So this was step one, and it kind of gave us some 

courage to push further, because once you understand that there is in fact a neural code that’s 

visible enough through the noisy images of fMRI scans, 

despite the noise in fMRI, it’s at least a strong-enough 

signal that we can train these decoders.

And once you realize that we all have pretty much the 

same neural code, then it actually makes sense to try to 

understand more about that code. If it had turned out the 

other way, that we all had different codes, maybe that 

would’ve been kind of the end of the story. But it wasn’t. 

So we got more aggressive. Think about what would it mean 

really to have a theory of neural representation of meaning?

Well, it’s not sufficient to just have a bunch of classifiers. If I had trained — you know, there are 

roughly 100,000 words in English — if I could train a classifier on all 100,000 words, I’d have, 

not a theory of neural codes, but I’d have a catalog of neural codes. So a theory is really some kind 

of formal system that can make predictions about phenomena that we haven’t yet run experiments 

on, and then we can test that theory by collecting new data and seeing whether it’s right.

“... even though we 
all have very different 
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So we thought what we’d really like is something like this. If we had a theory, it would mean that 

you could input an arbitrary noun and get a prediction of what the neural code should be for that 

noun. So we worked on this for a while, and the first method that succeeded looks like this. We 

built a computer model, again, using machine learning, that we could train.

And once trained, it would predict the neural activity, the fMRI image, for an arbitrary noun. And 

it predicts it in two steps. The first step is you take an arbitrary noun like telephone, in this case. 

Step one, we look that word up in a trillion words of text 

from the web, donated by Google, and represent that word 

as a vector. These days, we’d say vector and vetting if we’re 

neural nets people.

But a vector of statistics about how that word is used in that 

text. And in our case, each of the green dots in that vector 

corresponds to how often the word, in this case telephone, 

co-occurs with each of 25 different verbs. How often does 

telephone occur with hear or with eat and so forth? And 

then in step two, that vector canonical representation of any 

noun, now coded by this 25-dimensional vector, is used to — and the machine learning part comes 

in — to predict the activity in each of 20,000 locations in the fMRI image.

So let me do this in a little more detail so you can see what this looks like. So, for example, here 

on the left is the result of step one for the noun celery. If we’re trying to predict the image for 

celery, we find it occurs frequently with the verb eat and taste, but not very much with the verb 

ride. Whereas airplane occurs a lot with ride, but not very much with manipulate.

So these are the kind of statistics that come out of looking up the nouns and their verb 

occurrences on the web. And then in step two, now that we know that celery occurs this often with 

eat and this often with taste and so forth, the model predicts the activity in each location, like the 

prediction at voxel v-th, say here, this is the sum over those 25 verbs of the observed frequency 

with which the word celery occurs with the i-th verb, like .84 with eat, times some coefficient —  

that’s the machine learned part of this system — some coefficient that tells us for the i-th verb, 

how much does that contribute to the v-th voxel in the image?

And so for each verb, the model learns these different coefficients. For each of the 20,000 

locations in the image, it learns how much eat would contribute to activity in each location, and 

similarly learns that for taste. So in the end, it’s about half a million parameters that get learned. 

“... the patterns of neural 
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And then the linear combination like this gives us a predicted image. So that’s the model.

And now you can ask, Well, does it work? And there are two ways I can show you. One is, I could 

show you, here are celery and airplane and the predictions made by a model when we did not even 

include celery and airplane in the training data. So the model was trained on other words. And here 

you see the predicted and the observed patterns of neural activity for those two words.

And you can see, it’s not a perfect prediction, but it’s capturing significant parts of the observed 

neural activity. And so this is encouraging. We can also ask more quantitatively. We could test the 

system, by showing it, after it’s trained on these words, we can take two new words, collect the 

fMRI data for those two words, and say, well, here are two words: celery and airplane; here are two 

images: Which one is celery and which one is airplane?

And of course, if it guessed at chance, then we get 50 percent of those correct, just at chance. But 

in fact, we found that it was correct 79 percent of the time. And so, three times out of four, given 

words that it had never seen during training, this model is able to distinguish, predict the patterns 

of neural activity well enough that it can distinguish which of those two words generated which of 

these two patterns of neural activity.

So just think about that for a minute and what it means about 

the systematicity of the neural code in your brain. What this 

means: the fact that we can predict, extrapolate beyond words 

that were even in the training set, means that, it’s not that 

you have a hash code assigning randomly different patterns of 

neural activity to each word in some maximal distance way so 

that they don’t get too overlapping. It’s not that.

There’s a distinct structure to the neural code. It’s built up out 

of more primitive components. And in fact, in this model, what 

is this model saying? This model is saying that any word you can 

think of results in a pattern of neural activity which is a linear 

combination of 25 fundamental components, one for each of those 25 verbs. Now I don’t actually 

believe that’s true, but it’s true enough, it’s close enough to the truth, that it gives us a model that 

makes predictions with this kind of accuracy.

So it does mean that there’s a systematicity in the neural code and we’re capturing some 

approximation to that systematicity in this system. Okay, so that’s kind of interesting. Now we got 

interested in, well, what’s the real set of features? Honestly, I just made up those 25 verbs. So we 

“... any word you can 
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started experimenting with alternatives to those 25 verbs. We found we couldn’t really do much 

better than the 79 percent accuracy we were getting, until my colleague, Dean Pomerleau, came in 

one day and he had gone on Amazon Mechanical Turk and had people answer 218 questions like 

this. Is it heavy? Can it break? Can it swim? If you’ve ever played Twenty Questions, this will look 

familiar to you.

He went on Mechanical Turk and he had people answer these questions for each of our nouns 

and represented them with 218-dimensional code instead of our 25. And this resulted in higher 

accuracy, so that was encouraging. But then in fact, the best accuracy we encountered of 86 

percent was, I’m proud to say, due to turning the job over to a machine learning system.

So this is the work of my former Ph.D. student, Indra Rustandi. And what Indra did was, he built 

a machine learning system to learn the dimensions of the neural code, as well as the mappings. 

So how did he do that? Well, first of all, he started with 20 

data sets. We had nine human subjects who were in a study 

where we showed them 60 stimuli. But the stimuli were a 

combination of a picture, a line drawing, with a word written 

under it.

We had another 11 subjects where they saw the same 60 

stimuli, but this time only words. And so he took those 20 

data sets and used them — so in each data set, we have 

basically 60 fMRI images, one for each of these 60 stimuli — and he ran a technique called 

canonical correlation analysis to learn a latent 20-dimensional representation of each of these data 

sets.

And when I say that, what I really mean is CCA learns a linear function that maps data set 

1 to these 20 dimensions and a different linear function that maps data set 2 to the same 

20-dimensional representation. So basically, CCA learns a linear function from each data set to 

map them into a common representation. And the reason it’s called canonical correlation analysis 

is that the objective of the learning method is to maximize the correlation in these 20 different 

learned mappings, the correlation in the 20-dimensional vectors that they predict.

So, once we learned that, we don’t yet have a model, we just have a 20-dimensional representation 

that we know can be predicted by 20 different linear functions from these 20 different data sets. 

But now Indra brought in the 218 Mechanical Turk questions that Dean had given us, and he just 

learned to predict these 20 latent features from the known 218-dimensional vector that represents 

“If I put a word on the 
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each word. And then finally, he inverted this linear mapping so that we could predict, given a word, 

we write down the 218 Mechanical Turk features, predict those 20 dimensions and then predict 

the different brain images for each person.

So I like this model for a couple reasons. One, instead of us pre-committing to what the 

dimensions are that represent the primitive components of neural activity, we have the program 

discover what they were. Second, if you look at this model carefully, you notice that, on the left, 

there’s a part of the model that’s independent of person. That’s really subject-independent. Given 

a word, we map to this subject-independent 20-dimensional abstract representation of neural 

activity.

And then on the right side, we have person-specific mappings that take us from that population-

wide summary of neural activity to the individual groundings of those neural activity in each brain. 

And I think this is the kind of model that we need more and more of, going forward. Because there 

are, in fact, individual differences. Our brains are even different shapes and sizes.

But if we believe that there’s a shared representation, it’s nice to be able to represent it at this 

abstract level and then have another part of the model take care of the detailed physical mapping 

to where exactly at the voxel level is the activity in each brain. Okay. So that’s what I want to say 

about part one, which is really about the question of, What is the spatial distribution of neural 

activity that represents word meanings?

But now, you’re probably thinking, What about timing? I’m thinking, What about timing? Do you 

know how long it takes you to understand a word? I didn’t used to know this, but now I know. 400 

milliseconds. If I put a word on the screen, it takes you 400 milliseconds to understand that word. 

So there’s a lot going on — there could be a lot going on in that 400 milliseconds.

Unfortunately, with fMRI, we cannot see it. Because with fMRI, we get an image about once per 

second, and that’s too slow. Furthermore, it’s an image of blood oxygen fluctuations, which have 

a time constant of about five seconds. So there’s no chance an fMRI is going to give us the time 

resolution we need. So, several years ago now, we went off and started studying a second kind of 

imaging called magnetoencephalography (MEG).

Unlike the fMRI, magnetoencephalography is — it’s a ridiculous technology. You sit with a helmet 

around you which has super-cool squid magnetic field sensors, and the machine literally just 

passively listens to magnetic fields coming out of your brain. They’re very, very faint magnetic 

signals, so that if a bus drives by, it causes more of a signal than your brain did.
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But the nice thing about MEG is it gives us much finer time resolution. It gives us 1 millisecond. 

Remember it took you 400 milliseconds to understand a word. So now we can actually look at the 

timing of this. We can ask — well, let me show you a movie. Here is a movie showing the activity 

in the brain. I’m starting at 20 milliseconds before a word appears on the screen.

In this case, it’s the word hand, plus a line drawing of a hand. And I’m going to play this movie 

out to 550 milliseconds so that you can see the neural activity that happens while this person is 

reading that stimulus. As you look at the brain, I will just read out every 100 milliseconds, so you 

don’t have to look at the clock. Okay, here we go. 0 … 100 milliseconds … 200 … 300 … 400 … 

500. Okay.

So that’s what the brain activity actually looks like when you’re reading a word. It’s not a static 

picture, and it’s not a picture of just faint neural activity getting brighter and brighter with the 

same spatial distribution. There’s interesting dynamics there. Okay. So this is interesting, because 

with the fMRI data, we get a different view of what’s going on. We get some kind of integral over 

time of neural activity spatially. Now we can see the time.

So now if you’re a machine learning person, you’re going to look at that movie and you’re going 

to say, Well, that’s interesting, but what I want is instead a movie of the information flow coded 

in that neural activity over time. If you’re a machine learning person, you’re going to do what my 

student, Gus Sudre, did for his Ph.D. thesis. Gus said, well, I’m going to train about a million 

classifiers, and he did; each classifier is going to look at a 50-millisecond subwindow in time.

It’s going to look at one of 70 different regions in the brain. And using that 50-millisecond window 

of neural activity in that one brain location, it’s going to try to predict some semantic feature of the 

stimulus. And he used the 218 Mechanical Turk features, like Is it hairy, Does it breathe, those 

kinds of things. So for every possible feature, every 50-millisecond time window, and every location 

in the brain, he trained a classifier to predict that feature from that activity.

And then he tested on held-out data how accurate those classifiers were. And of course, most 

of them had accuracy of exactly chance, because that part of the brain at that time was not 

coding that feature. But some of them succeeded. Some of them actually did successfully predict 

particular features and particular times in particular places. So he took this movie and turned it 

into — there’s Gus — turned it into the following movie instead.

This goes by frames of 50 milliseconds each. In the first 50 milliseconds, absolutely nothing 

about the stimulus word could be decoded from neural activity. But at 100 milliseconds, in several 
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places we could decode the word length, the number of letters in the word. Not a semantic feature 

of the word, but the number of letters. In the next 50 milliseconds, still perceptual features but 

nothing semantic. At 200, we get our first semantic feature. Is it hairy? Which I think is actually a 

placeholder for, Is it animate?

And then at 250, more, and at 300, more features, and at 350, and at 400. So now we can 

basically use this idea of training a classifier as a virtual sensor of information content in the 

neural signal. We can run that across time windows and also run it around in different locations in 

the brain and end up with the first picture of, What’s the sequence of information coded across the 

brain during the 400 milliseconds that it takes you to understand the word?

And sure enough, at around 400 is when the greatest 

number of semantic features are encoded by the neural 

activity, and it starts dropping off again after that. So this 

is kind of interesting. In fact, I want to show you a little 

bit more detail on this one. Because before we did this, 

we had all kinds of questions, like what happens once your 

brain finds a feature, does that feature then move around, 

like it found out, is this animate? Does that feature just 

kind of stay there in that one part of the brain, or does 

it move around? How long does it stay? Does it stay 100 

milliseconds, 500 milliseconds? What does this all look 

like? So what I can show you, and I will on the next slide, 

is a picture where I’ll show a matrix, and each column is one of 75 different locations in the brain, 

and each row is time, this would be the time axis, starting from onset of the stimulus and going 

forward.

And then I can show in color which locations and which times we can successfully decode a 

particular feature. So here it is for the feature word length, that is the number of characters in the 

words. So this is a perceptual feature, not semantic. But what you see here is in blue means we’re 

just getting chance accuracy, trying to decode. But here you can see, red means that with relatively 

high accuracy in the left and right cuneus at about 100 milliseconds to 150, we can decode the 

number of letters in the word pretty accurately.

But interestingly, there are a whole bunch of — half a dozen different regions — where suddenly, 

simultaneously you can decode this feature. And these regions are not right next to each other. For 

example: well, many of them are left/right pairs, like left/right occipital or like back here and back 

“So it’s not a confusion 
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here. So it’s not a confusion of blurring of the image; it’s literally their distinct physical regions 

where magically, simultaneously, this feature is encoded in the neural activity.

And then it goes away. Actually, it lasts for about 100, or at most, 200 milliseconds, but by the 

time you get to 400 milliseconds, which is when your brain really understands the word, there’s no 

place in the brain where we can reliably decode the letter features anymore. It’s like your brain is 

done with that. It’s throwing that away. It’s on to the semantic features.

So, and in fact, I could show you these similar plots for 

semantic features and you see that they occur later in 

time, like the feature — is it animate, or can you pick it 

up, or is it graspable, or do you love it — are all semantic 

features. They come later than this 150 milliseconds. 

Okay. But now back to the point. I mean, this was a total 

surprise to me that the way it works is that your brain 

simultaneously in multiple distant regions generates 

neural activity that codes the same feature.

So this raises the obvious question: Are those different 

parts of your brain communicating with each other? 

What’s going on? And so, more recently, again, we can 

ask, Are these collaborating? We can turn that into a data 

analysis question, which is, Are these different neural 

activities in these different brain regions synchronized? 

Are they going up and down together? And are they 

synchronized particularly at the times when they’re 

coding the same information?

We’ve looked at the neural activity in the different 

regions. It’s not the same activity. But maybe it’s phase-

locked, maybe it’s in synchrony. And so Maria Toneva, here she is, did an analysis and found that 

in fact, yes, in fact the neural activity — she picked the one region where the activity is most 

strongly coded right here, the darkest red, left lateral occipital — and she looked at what some 

people call functional connectivity or the temporal synchronization, between that region and the 

other regions that code, in this case word length, so well.

And what she found was, yes, those other regions are correlated in their neural activity with 

“So the size of the object, 
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this one. And furthermore, the correlation peaks about 25 to 100 milliseconds before they 

simultaneously code that information. So one hypothesis would be that these regions, they’re 

communicating. They’re oscillating together. They’re phase-locked. And they’re somehow working 

together to figure out what the answer is, to compute whatever this property is that they’re 

encoding.

And then while they’re doing that, they’re in synchrony. And then once they get the information, 

that synchrony goes away, and they all just have it. So that’s not a proof that that’s how the 

brain works, but this is data that suggests that that kind of coordinated, synchronous brain 

activity across regions precedes the time when suddenly all of these different regions code that 

information. So maybe that’s a hint about how it’s working.

Okay. So that’s what I wanted to say about time. Let me just before I leave this tell you that if you 

ask me, out of those 218 features that represent different aspects of word meaning, which ones 

were most visible, most decodable from the neural activity, here’s the answer. Here are the top 20 

in order. And if you look at that list, you notice they fall into interesting groups.

So the size of the object, even though we’re presenting line drawings that are exactly the same 

size, if it’s a line drawing of a truck, it’s the same size as our line drawing of a bumblebee, but the 

actual physical size of a bumblebee or a truck is coded in your neural activity. So is manipulability. 

So is animacy. And so is shelter. And these four themes are actually things that we’ve seen across 

many experiments now and across both MEG studies and fMRI studies.

They seem to be emerging as key primitive components of meaning representation across at least 

the nouns that we’ve been dealing with. Okay. So I want to finish up by looking at the third of 

these three dimensions. So we started by looking at the fMRI, spatial distribution of neural activity 

coding words. Then we looked at the timing, the 1 millisecond resolution timing for understanding 

a single word.

But more recently, we’ve been looking at, How does the brain combine multiple words? Language is 

really about multiple words. So how does the brain combine, say, a noun and an adjective, hungry 

cat versus cuddly cat, into the meaning of the thing? Or how does it interpret sentences? Or in 

this case, the example I chose for today is a story-reading experiment that Leila Wehbe, one of my 

former students, did for her Ph.D. recently.

And she put people in a scanner and she showed them the following stimuli. I want you to pay 

attention here. Imagine you’re lying still in the scanner. This is what you’re going to see … Okay. 

So that’s a story. In fact, the story continues for about 35 minutes like that. It’s one chapter of a 
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Harry Potter book. And you’re seeing one word every 500 milliseconds. Remember it takes you 400 

milliseconds to understand a word, so no problem there. And you could see that even in that short 

little sample, you get used to it pretty quickly.

So you’re reading in a — it’s not exactly natural reading, but it’s pretty close. And it has the 

advantage that we know down to the millisecond when you saw each word. So Leila put people in 

the scanner, both fMRI and MEG, showed them 35 minutes of a Harry Potter story, and then her 

job was to figure out, what can you learn from this? So she did what I think are two very interesting 

things.

First, in the fMRI data, this is the kind of thing she would get out. So presenting a word every 500 

milliseconds, she’s getting one fMRI image every 2 seconds. So this is the kind of thing she got. 

From this, she trained a model reminiscent of the very first one that I told you about, where we had 

a single word, we would represent it by a vector embedding of verb frequencies, and then predict 

the fMRI activity.

So she used the same idea to predict — so for each word in the story, we’re going to construct 

a vector and then use that to predict the sequence of fMRI and MEG data. But now, because 

it’s a story, Leila and I sat down and made up a bunch of features and labeled every word in the 

Harry Potter chapter with what ended up being 199 features. And some of these were low-level 

perceptual features, like How many letters are in the word? Others were word-level features, like 

the current word, Is it a noun or a verb or a determiner?

But some of them were about discourse, like Are we in the middle of a conversation between 

two characters? Is one of the characters doing some physical motion? Did we just move to a new 

scene in the story? So we tried to capture features all the way from perceptual to individual word 

semantics, syntax and discourse-level properties. And then she trained a model to predict the 

sequence of neural activity from the sequence of these 199-dimensional features per word in the 

story.

She tested that model then, again, in an analogous way to before; she would train it, then she 

would show it segments of the story that were left out of training, two new text segments, like the 

two on the left. The model would have to predict a sequence of fMRI images. And then she would 

give it the observed fMRI image sequence for one of those two passages. And basically, she tested 

whether the model made good-enough predictions of the neural activity that it could distinguish 

which of those two passages was being read during this brain image sequence.
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And this worked, again, with three times out of four. But what’s interesting about it, and this is 

what I want to show you, is what the model leads to is a refinement of things that had been in the 

literature before. So here’s the 2012 paper by Ev Fedorenko at MIT, who had mapped out regions 

of the brain that she said were related to reading. These are regions of the brain she published as 

related to reading. But because of the kind of model Leila 

had built, she could say not only what regions were related 

to reading, but what information were they coding.

So what are the different regions — so in Leila’s work, she 

could distinguish what parts of those brain regions that 

were active were, for example, coding dialogue between 

characters versus motion of one of the characters versus 

syntax of the current word that you’re reading. So again, 

taking advantage of the idea that these classifiers really can 

be treated as virtual sensors of the information content.

All right. I have one final thing that I’ll wrap up with. It 

has to do with context. So understanding a sentence or a 

story is much more than independently understanding each 

word and then forgetting the context. It’s all about context 

in some sense. And so we’re interested in how we could 

study this and came up with the following idea: We trained 

a neural network to predict the next word in the story, based 

on the history of words up until time T.

This is an idea stolen from the natural language community. 

So we trained a recurrent neural network where the input 

is the word at time T, plus some context, which I’ll call S. We’ll see in a minute where that comes 

from. And the network is trained to predict the next word, the probability distribution, over the next 

word. So if I say to you, for example, Harry jumped on his, you might think the next word is bed or 

broom, but probably not yellow, or maybe yellow, probably not cloud.

So you have some kind of probability distribution in your head about what the next word could be. 

So we trained a neural network to predict the probability distribution over the next word, given 

the current word and a summary of context. But it was the neural network that had to learn the 

summary of context by feeding back the hidden layer of the network from the previous time. This is 

a standard kind of recurrent neural network.

“... understanding a 
sentence or a story is much 
more than independently 
understanding each word 
and then forgetting the 
context. It’s all about 
context in some sense. And 
so we’re interested in how 
we could study this and 
came up with the following 
idea: We trained a neural 
network to predict the next 
word in the story, based 
on the history of words up 
until time T.” 
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But the point is that the network has to, somehow, in order to succeed, has to learn an internal 

coding of the history up until time T. And so we thought if we can train that network, and we did, 

then we could use that learned code of the context, of the history, and see what neural activity 

in the brain, whether there was any neural activity in the brain, that was actually encoding that 

context.

And the answer turned out to be yes. So one way to think of it is this: so we have the sequence, 

Harry had never. Then when we’re looking at the word never, we have the code for never. We also 

have the context, which is based on combining the previous word with the context before that. 

And we also have the probability distribution over the next 

word. If you look at the MEG activity and you try to decode 

where we are in the story using these three different types 

of information, you find that in fact the context is the best 

information. If you’re trying to see where you are in the 

story, it’s the context information that’s most vibrant in 

the neural activity. And the current word is secondary to 

that. And in fact, we can map out where in the brain these 

different features are encoded and have. So the point of 

this one is that, again, this is, I think, a direction that we 

want to go more of in the future, which is to study language 

processing in the brain, you have to ask the fundamental 

question.

Once we have an answer to how the brain processes 

language, what will that answer look like? Will it be an 

equation? Will it be a schematic of the neural connectivity 

in the brain? For me, the answer will look like a computer 

program, because the brain is fundamentally an information 

processor. And if you want to tell me, once you understand how the brain processes language, 

I think the most natural way for you to tell me is to give me a computer program that processes 

language.

Show me the mapping between, if I give that computer program a particular word sequence to 

read, you can prove to me that your program is a good model if you can show me that, when it 

reads that sequence of words, it can predict the sequence of neural activity when a person reads 

“Once we have an answer 
to how the brain processes 
language, what will that 
answer look like? Will 
it be an equation? Will 
it be a schematic of the 
neural connectivity in the 
brain? For me, the answer 
will look like a computer 
program, because the 
brain is fundamentally an 
information processor. ” 
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the same sequence. And so this is a step in that direction. 

It’s not the solution, but it suggests, I think, the kind of 

thing that we need to see more of and will see more of 

over the coming decade: that it’s more of a convergence 

of AI and neuroscience, at least cognitive neuroscience, 

to studies where we have computer programs that perform 

a function and we use those literally as models of the 

information processing steps the brain must also be doing. 

And the way we prove whether we’re right or wrong is by 

using those models to predict literally the sequence of 

neural activity. And if you have a better model than I have, 

then presumably, your model will predict the neural activity 

better.

So what we will be arguing about is not whether your 

program understands the sentence, but whether your 

program which understands the sentence is a better 

predictor of the neural activity than program 2, which also 

understands the sentence. Okay. 

So let me end there. Thank you for your patience. So here’s 

my two-sentence summary of the talk. Brain imaging is a 

revolution. It’s a 25-year-old revolution, but it’s still young. 

There’s a lot that we’re going to learn, including how to 

use machine learning in similar methods to analyze and 

interpret that data. To me, the field is moving happily toward a point where AI systems become 

models, become our way of studying and proposing models of how the brain performs similar 

functions. So we’re still in the early days, but anybody here looking for a thesis topic, this is a 

great area. Thank you.

“Brain imaging is a 
revolution. It’s a 25-year-
old revolution, but it’s 
still young. There’s a 
lot that we’re going to 
learn, including how to 
use machine learning 
in similar methods to 
analyze and interpret that 
data. To me, the field is 
moving happily toward a 
point where AI systems 
become models, become 
our way of studying and 
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the brain performs similar 
functions.” 


